Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Int J Clin Oncol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600426

RESUMO

BACKGROUND: Adenocarcinomas show a stepwise progression from atypical adenomatous hyperplasia (AAH) through adenocarcinoma in situ (AIS) to invasive adenocarcinoma (IA). Immunoglobulin superfamily containing leucine-rich repeat (ISLR) is a marker of tumor-restraining cancer-associated fibroblasts (CAFs), which are distinct from conventional, strongly α-smooth muscle actin (αSMA)-positive CAFs. Fibroblast activation protein (FAP) has been focused on as a potential therapeutic and diagnostic target of CAFs. METHODS: We investigated the changes in protein expression during adenocarcinoma progression in the pre-existing alveolar septa by assessing ISLR, αSMA, and FAP expression in normal lung, AAH, AIS, and IA. Fourteen AAH, seventeen AIS, and twenty IA lesions were identified and randomly sampled. Immunohistochemical analysis was performed to evaluate cancer-associated changes and FAP expression in the pre-existing alveolar structures. RESULTS: Normal alveolar septa expressed ISLR. The ISLR level in the alveolar septa decreased in AAH and AIS tissues when compared with that in normal lung tissue. The αSMA-positive area gradually increased from the adjacent lung tissue (13.3% ± 15%) to AIS (87.7% ± 14%), through AAH (70.2% ± 21%). Moreover, the FAP-positive area gradually increased from AAH (1.69% ± 1.4%) to IA (11.8% ± 7.1%), through AIS (6.11% ± 5.3%). Protein expression changes are a feature of CAFs in the pre-existing alveolar septa that begin in AAH. These changes gradually progressed from AAH to IA through AIS. CONCLUSIONS: FAP-positive fibroblasts may contribute to tumor stroma formation in early-stage lung adenocarcinoma, and this could influence the development of therapeutic strategies targeting FAP-positive CAFs for disrupting extracellular matrix formation.

2.
Cancer Sci ; 115(4): 1114-1128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332689

RESUMO

The direction and magnitude of immune responses are critically affected when dead cells are disposed of. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) promotes the engulfment of apoptotic normal and cancerous cells without inducing inflammation. We have previously reported that a certain proportion of the cancer cells express abundant MFG-E8, and that such expression is associated with the shorter survival of patients with esophageal cancer who had received chemotherapy before surgery. However, the influence of tumor-derived and systemically existing MFG-E8 on antitumor immune responses has not yet been fully investigated. Herein, we showed that CTL-dependent antitumor immune responses were observed in mice with no or decreased levels of systemic MFG-E8, and that such responses were enhanced further with the administration of anti-PD-1 antibody. In mice with decreased levels of systemic MFG-E8, the dominance of regulatory T cells in tumor-infiltrating lymphocytes was inverted to CD8+ T cell dominance. MFG-E8 expression by tumor cells appears to affect antitumor immune responses only when the level of systemic MFG-E8 is lower than the physiological status. We have also demonstrated in the clinical setting that lower levels of plasma MFG-E8, but not MFG-E8 expression in tumor cells, before the treatment was associated with objective responses to anti-PD-1 therapy in patients with non-small cell lung cancer. These results suggest that systemic MFG-E8 plays a critical role during the immunological initiation process of antigen-presenting cells to increase tumor-specific CTLs. Regulation of the systemic level of MFG-E8 might induce efficient antitumor immune responses and enhance the potency of anti-PD-1 therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Esofágicas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Antígenos de Superfície/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Inflamação/patologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas do Leite/metabolismo , Linfócitos T Citotóxicos/metabolismo
3.
Cancer Med ; 13(3): e7042, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400666

RESUMO

BACKGROUND: Liver injury associated with oxaliplatin (L-OHP)-based chemotherapy can significantly impact the treatment outcomes of patients with colorectal cancer liver metastases, especially when combined with surgery. To date, no definitive biomarker that can predict the risk of liver injury has been identified. This study aimed to investigate whether organoids can be used as tools to predict the risk of liver injury. METHODS: We examined the relationship between the clinical signs of L-OHP-induced liver injury and the responses of patient-derived liver organoids in vitro. Organoids were established from noncancerous liver tissues obtained from 10 patients who underwent L-OHP-based chemotherapy and hepatectomy for colorectal cancer. RESULTS: Organoids cultured in a galactose differentiation medium, which can activate the mitochondria of organoids, showed sensitivity to L-OHP cytotoxicity, which was significantly related to clinical liver toxicity induced by L-OHP treatment. Organoids from patients who presented with a high-grade liver injury to the L-OHP regimen showed an obvious increase in mitochondrial superoxide levels and a significant decrease in mitochondrial membrane potential with L-OHP exposure. L-OHP-induced mitochondrial oxidative stress was not observed in the organoids from patients with low-grade liver injury. CONCLUSIONS: These results suggested that L-OHP-induced liver injury may be caused by mitochondrial oxidative damage. Furthermore, patient-derived liver organoids may be used to assess susceptibility to L-OHP-induced liver injury in individual patients.


Assuntos
Antineoplásicos , Doença Hepática Crônica Induzida por Substâncias e Drogas , Neoplasias Colorretais , Humanos , Oxaliplatina/efeitos adversos , Neoplasias Colorretais/patologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Organoides/patologia , Antineoplásicos/efeitos adversos
4.
J Appl Lab Med ; 8(6): 1065-1073, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37748758

RESUMO

BACKGROUND: Next-generation sequencing (NGS)-based genomic profiling is becoming widespread in determining treatment policies for patients with tumors. Commercially available gene panels for pan-tumor targets comprise hundreds of tumor-related genes but frequently lack genes of interest in specific tumor types. In this study, we demonstrate a method for extending target regions of genomic profiling by combining a custom probe pool with a commercial targeted panel. METHODS: We used TruSight Oncology 500 (TSO500) as a commercial targeted panel and a custom probe pool designed for all exons of the SMARCA2 gene. Sequencing libraries of custom targets were constructed using a portion of the TSO500 library solution before the hybridization-capture process. After hybridization capture, both libraries were combined and sequenced using a next-generation sequencer. RESULTS: Sequencing results showed that >96.8% and 100% of the target exons were covered at a depth of over 100× using the TSO500 and custom panels, respectively. The custom panels had slightly better median exon coverage than the TSO500. The combined libraries of the custom and TSO500 panels showed a mapped read ratio close to the mixing ratio. Analysis of mutation-free regions showed similar accuracies between the TSO500 and custom panels regarding variant calling. CONCLUSIONS: Our devised method easily and affordably extends the targets beyond a ready-made panel. This method provides a valuable solution until the widespread adoption of whole-exome sequencing, which is costly for large target sizes.


Assuntos
Neoplasias , Humanos , Mutação , Biblioteca Gênica , Neoplasias/genética , Genômica
5.
Elife ; 122023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37461317

RESUMO

Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs). This metabolic remodeling impaired dormant origin firing required to rescue stalled forks by cisplatin, thus exacerbating replication stress. Importantly, pharmacological inhibition of de novo dNTP biosynthesis was sufficient to retard cell cycle progression, sensitize cells to cisplatin, and inhibit dormant origin firing, suggesting dNTP loss-induced genomic instability as a central mechanism for the anticancer activity of mannose.


In order to grow and divide, cells require a variety of sugars. Breaking down sugars provides energy for cells to proliferate and allows them to make more complex molecules, such as DNA. Although this principle also applies to cancer cells, a specific sugar called mannose not only inhibits cancer cell division but also makes them more sensitive to chemotherapy. These anticancer effects of mannose are particularly strong in cells lacking a protein known as MPI, which breaks down mannose. Evidence from honeybees suggests that a combination of mannose and low levels of MPI leads to a build-up of a modified form of mannose, called mannose-6-phosphate, within cells. As a result, pathways required to release energy from glucose become disrupted, proving lethal to these insects. However, it was not clear whether the same processes were responsible for the anticancer effects of mannose. To investigate, Harada et al. removed the gene that encodes the MPI protein in two types of human cancer cells. The experiments showed that mannose treatment was not lethal to these cells but overall slowed the cell cycle ­ a fundamental process for cell growth and division. More detailed biochemical experiments showed that cancer cells with excess mannose-6-phosphate could not produce the molecules required to make DNA. This prevented them from doubling their DNA ­ a necessary step for cell division ­ and responding to stress caused by chemotherapy. Harada et al. also noticed that cancer cells lacking MPI did not all react to mannose treatment in exactly the same way. Therefore, future work will address these diverse reactions, potentially providing an opportunity to use the mannose pathway to search for new cancer treatments.


Assuntos
Manose , Neoplasias , Humanos , Cisplatino , Instabilidade Genômica , Nucleotídeos , Replicação do DNA
6.
Oncoimmunology ; 12(1): 2218782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261089

RESUMO

Eribulin mesylate (ERB) is a synthetic analog of halichondrin B, inhibiting tumor cell growth by disrupting microtubule function. Recently, anticancer drugs have been shown to not only act directly on tumor cells but also to exert antitumor effects by modifying the tumor environment. Although ERB has also been speculated to modify the tumor microenvironment including the immune response to tumors, the precise mechanism remains unclear. In our study, ERB suppressed the tumor growth of MC38 colon cancer in wildtype mice, whereas ERB failed to inhibit the tumor growth in Rag1-deficient mice which lack both B and T cells. Moreover, depletion of either CD4+ or CD8+ T cells abrogated the antitumor effect of ERB, indicating that both CD4+ and CD8+ T cells play an important role in ERB-induced antitumor effects. Furthermore, ERB treatment increased the number of tumor infiltrating lymphocytes (TILs) as well as the expression of activation markers (CD38 and CD69), immune checkpoint molecules (LAG3, TIGIT and Tim3) and cytotoxic molecules (granzyme B and perforin) in TILs. ERB upregulated E-cadherin expression in MC38. CD103 is a ligand of E-cadherin and induces T-cell activation. ERB increased the proportion of CD103+ cells in both CD4+ and CD8+ TILs. The ERB-induced antitumor effect with the increased TIL number and the increased expression of activation markers, inhibitory checkpoint molecules and cytotoxic molecules in TILs was abrogated in CD103-deficient mice. Collectively, these results suggest that ERB exerts antitumor effects by upregulation of E-cadherin expression in tumor cells and subsequent activation of CD103+ TILs.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Prognóstico , Neoplasias/terapia , Ativação Linfocitária , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Caderinas/metabolismo , Microambiente Tumoral
7.
Mol Cancer Res ; 21(1): 76-85, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36162957

RESUMO

IMPLICATIONS: Considering the importance of GSTA4 in controlling IFNγ responsiveness and the metastatic potential of other melanoma cells, our results highlight a novel mechanism whereby cancer cells escape from host immunity and gain metastatic ability by acquiring resistance to oxidative stress responses through the upregulation of GSTA4.


Assuntos
Interferon gama , Melanoma , Humanos , Interferon gama/genética , Melanoma/patologia , Regulação para Cima , Metástase Neoplásica
8.
Int Immunol ; 34(5): 277-289, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35094065

RESUMO

Effective tumor immunotherapy requires physical contact of T cells with cancer cells. However, tumors often constitute a specialized microenvironment that excludes T cells from the vicinity of cancer cells, and its underlying mechanisms are still poorly understood. DOCK2 is a Rac activator critical for migration and activation of lymphocytes. We herein show that cancer-derived cholesterol sulfate (CS), a lipid product of the sulfotransferase SULT2B1b, acts as a DOCK2 inhibitor and prevents tumor infiltration by effector T cells. Using clinical samples, we found that CS was abundantly produced in certain types of human cancers such as colon cancers. Functionally, CS-producing cancer cells exhibited resistance to cancer-specific T-cell transfer and immune checkpoint blockade. Although SULT2B1b is known to sulfate oxysterols and inactivate their tumor-promoting activity, the expression levels of cholesterol hydroxylases, which mediate oxysterol production, are low in SULT2B1b-expressing cancers. Therefore, SULT2B1b inhibition could be a therapeutic strategy to disrupt tumor immune evasion in oxysterol-non-producing cancers. Thus, our findings define a previously unknown mechanism for tumor immune evasion and provide a novel insight into the development of effective immunotherapies.


Assuntos
Neoplasias , Oxisteróis , Ésteres do Colesterol/metabolismo , Humanos , Imunoterapia , Linfócitos T/metabolismo , Microambiente Tumoral
9.
Endosc Int Open ; 10(1): E82-E87, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35036290

RESUMO

Background and study aims In patients with pancreatic cancer (PC), patient-derived organoid cultures can be useful tools for personalized drug selection and preclinical evaluation of novel therapies. To establish a less invasive method of creating organoids from a patient's tumor, we examined whether PC organoids can be established using residual samples from saline flushes (RSSFs) during endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA). Methods Five patients with PC who underwent EUS-FNA were enrolled in a prospective study conducted at our institution. RSSFs obtained during EUS-FNA procedures were collected. An organoid culture was considered as established when ≥ 5 passages were successful. Organoid-derived xenografts were created using established organoids. Results EUS-FNA was performed using a 22- or 25-gauge lancet needle without complications. Patient-derived organoids were successfully established in four patients (80.0 %) with the complete medium and medium for the selection of KRAS mutants. Organoid-derived xenografts were successfully created and histologically similar to EUS-FNA samples. Conclusions Patient-derived PC organoids were successfully established using EUS-FNA RSSFs, which are produced as a byproduct of standard manipulations, but are usually not used for diagnosis. This method can be applied to all patients with PC, without additional invasive procedures, and can contribute to the development of personalized medicine and molecular research.

10.
JTO Clin Res Rep ; 2(11): 100235, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34746887

RESUMO

A SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a rapidly progressing subtype of lung cancer with a poor prognosis and causes early postoperative recurrence among operable patients. In this study, we present a case of SMARCA4-UT with vertebral and chest wall invasion that successfully underwent conversion surgery after treatment with atezolizumab in combination with bevacizumab, paclitaxel, and carboplatin. The surgical specimen comprised SMARCA4-deficient and SMARCA2-positive adenocarcinoma, confirming intratumor heterogeneity. Gene panel analysis revealed no substantial differences in mutant gene profiles among tumors and no differences in SMARCA2 mutations. Furthermore, no recurrence occurred for 9 months after surgery. Thus, this case illustrates the possibility of multidisciplinary treatment including neoadjuvant therapy with immunotherapy and conversion surgery for SMARCA4-UT.

11.
Mol Ther Oncolytics ; 22: 265-276, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34553018

RESUMO

Most oncolytic virotherapy has thus far employed viruses deficient in genes essential for replication in normal cells but not in cancer cells. Intra-tumoral injection of such viruses has resulted in clinically significant anti-tumor effects on the lesions in the vicinity of the injection sites but not on distant visceral metastases. To overcome this limitation, we have developed a receptor-retargeted oncolytic herpes simplex virus employing a single-chain antibody for targeting tumor-associated antigens (RR-oHSV) and its modified version with additional mutations conferring syncytium formation (RRsyn-oHSV). We previously showed that RRsyn-oHSV exhibits preserved antigen specificity and an ∼20-fold higher tumoricidal potency in vitro relative to RR-oHSV. Here, we investigated the in vivo anti-tumor effects of RRsyn-oHSV using human cancer xenografts in immunodeficient mice. With only a single intra-tumoral injection of RRsyn-oHSV at very low doses, all treated tumors regressed completely. Furthermore, intra-venous administration of RRsyn-oHSV resulted in robust anti-tumor effects even against large tumors. We found that these potent anti-tumor effects of RRsyn-oHSV may be associated with the formation of long-lasting tumor cell syncytia not containing non-cancerous cells that appear to trigger death of the syncytia. These results strongly suggest that cancer patients with distant metastases could be effectively treated with our RRsyn-oHSV.

12.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439104

RESUMO

The exact mechanisms of the imiquimod (IMQ)-induced antitumor effect have not been fully understood. Although both topical IMQ treatment and anti-PD-1 antibody may be used for primary skin lesions or skin metastases of various cancers, the efficacy of each monotherapy for these lesions is insufficient. Using a murine tumor model and human samples, we aimed to elucidate the detailed mechanisms of the IMQ-induced antitumor effect and analyzed the antitumor effect of combination therapy of topical IMQ plus anti-PD-1 antibody. Topical IMQ significantly suppressed the tumor growth of MC38 in wildtype mice. IMQ upregulated interferon γ (IFN-γ) expression in CD8+ T cells in both the lymph nodes and the tumor, and the antitumor effect was abolished in both Rag1-deficient mice and IFN-γ-deficient mice, indicating that IFN-γ produced by CD8+ T cells play a crucial role in the IMQ-induced antitumor effect. IMQ also upregulated PD-1 expression in T cells as well as PD-L1/PD-L2 expression in myeloid cells, suggesting that IMQ induces not only T-cell activation but also T-cell exhaustion by enhanced PD-1 inhibitory signaling. Combination therapy of topical IMQ plus anti-PD-1 antibody exerted a significantly potent antitumor effect when compared with each single therapy, indicating that the combination therapy is a promising therapy for the skin lesions of various cancers.

13.
Cancer Sci ; 112(9): 3484-3490, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34187084

RESUMO

For successful immunotherapy for cancer, it is important to understand the immunological status of tumor antigen-specific CD8+ T cells in the tumor microenvironment during tumor progression. In this study, we monitored the behavior of B16OVA-Luc cells in mice immunized with a model tumor antigen ovalbumin (OVA). Using bioluminescence imaging, we identified the time series of OVA-specific CD8+ T-cell responses during tumor progression: initial progression, immune control, and the escape phase. As a result of analyzing the status of tumor antigen-specific CD8+ cells in those 3 different phases, we found that the expression of NKG2D defines tumor-reacting effector CD8+ T cells. NKG2D may control the fate and TOX expression of tumor-reacting CD8+ T cells, considering that NKG2D blockade in OVA-vaccinated mice delayed the growth of the B16OVA-Luc2 tumor and increased the presence of tumor-infiltrating OVA-specific CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral/imunologia , Animais , Antígenos de Neoplasias/administração & dosagem , Antígenos de Neoplasias/metabolismo , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacocinética , Bromodesoxiuridina/administração & dosagem , Bromodesoxiuridina/farmacocinética , Interferon gama/deficiência , Interferon gama/genética , Luciferases/metabolismo , Medições Luminescentes/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Ovalbumina/metabolismo , Neoplasias Cutâneas/patologia , Vacinação/métodos
14.
Immunotherapy ; 13(10): 799-806, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34030451

RESUMO

SMARCA4-deficient thoracic sarcoma (DTS) is a recently noted progressive thoracic malignancy. We recently experienced three cases of SMARCA4-DTS who were treated with atezolizumab in combination with bevacizumab, paclitaxel and carboplatin (ABCP) as the first-line therapy. Immunohistopathological analysis revealed absent expression of SMARCA4 in all cases. The tumor mutational burden was over 11/Mb and mutations in SMARCA4 and TP53 were detected in all three cases. Partial response to ABCP treatment was observed in all three cases, with a progression-free survival of approximately 6 months or longer and a continuous response of 1 year or longer in one case. The first-line ABCP treatment demonstrated durable efficacy in SMARCA4-DTS regardless of the degree of PD-L1 expression.


Lay abstract Lung cancer is the leading cause of cancer-related death worldwide. Among them, SMARCA4-deficient thoracic sarcoma (DTS), which lacks SMARCA4 expression and exhibits an undifferentiated carcinoma histology, is a recently identified subtype of lung cancer. It tends to occur in younger people with heavy smoking status and has been reported to recur quickly and have a poor prognosis even after chemotherapy, radiation therapy or surgery. There is no effective molecularly targeted agent for SMARCA4-DTS and the identification of an effective therapy is required. Here, we report the clinical features and genomic information of three SMARCA4-DTS cases in which atezolizumab with bevacizumab, paclitaxel and carboplatin treatment was effective. This report suggests the efficacy of atezolizumab with bevacizumab, paclitaxel and carboplatin treatment compared with conventional chemotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Bevacizumab/uso terapêutico , Carboplatina/uso terapêutico , DNA Helicases/deficiência , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/deficiência , Paclitaxel/uso terapêutico , Sarcoma/tratamento farmacológico , Fatores de Transcrição/deficiência , Idoso , Antineoplásicos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Quimioterapia Combinada/métodos , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Sarcoma/imunologia , Resultado do Tratamento
15.
Mol Clin Oncol ; 14(5): 87, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33767856

RESUMO

Preoperative chemoradiotherapy (CRT) for rectal cancer contributes to tumor down-staging and decreases locoregional recurrence. However, each patient shows a significantly different response to CRT. Therefore, the identification of predictive factors to CRT response would be beneficial to avoid unnecessary treatment. Cancer immunity in patients has been suggested to play an important role in the eradication of the tumor by CRT. In the present study, the utility of CD8+ and forkhead box P3 (FoxP3)+ tumor-infiltrating lymphocytes (TILs) and the expression of a novel immuno-regulatory factor, lactadherin (MFG-E8), in predicting CRT effectiveness in patients with rectal cancer was examined. A total of 61 patients with rectal cancer, who underwent curative resection following CRT were included in the study. The numbers of CD8+ and FoxP3+ TILs in a biopsy taken before CRT and MFG-E8 expression level in the specimens obtained at the time of the surgery after CRT were examined using immunohistochemical staining, and their association with clinicopathological characteristics, including patient survival, was determined. The tumors with more CD8+ TILs in the biopsy samples before CRT showed a significantly more favorable CRT response. The patients with tumors and a higher number of CD8+ TILs before CRT also exhibited significantly longer disease-free and overall survival times. Higher MFG-E8 expression level in post-CRT specimens was significantly associated with favorable CRT response; however, no significant association was found with any other clinicopathological characteristics, including survival time. The number of CD8+ TILs before CRT was a valuable predictor for CRT response and was associated with favorable prognosis in patients with lower rectal cancer and who were treated with CRT. High MFG-E8 expression level after CRT was also associated with a favorable CRT response.

16.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33627393

RESUMO

Herpes simplex virus (HSV) is a promising tool for developing oncolytic virotherapy. We recently reported a platform for receptor-retargeted oncolytic HSVs that incorporates single-chain antibodies (scFvs) into envelope glycoprotein D (gD) to mediate virus entry via tumor-associated antigens. Therefore, it would be useful to develop an efficient system that can screen antibodies that might mediate HSV entry when they are incorporated as scFvs into gD. We created an HSV-based screening probe by the genetic fusion of a gD mutant with ablated binding capability to the authentic HSV entry receptors and the antibody-binding C domain of streptococcal protein G. This engineered virus failed to enter cells through authentic receptors. In contrast, when this virus was conjugated with an antibody specific to an antigen on the cell membrane, it specifically entered cells expressing the cognate antigen. This virus was used as a probe to identify antibodies that mediate virus entry via recognition of certain molecules on the cell membrane other than authentic receptors. Using this method, we identified an antibody specific to epiregulin (EREG), which has been investigated mainly as a secreted growth factor and not necessarily for its precursor that is expressed in a transmembrane form. We constructed an scFv from the anti-EREG antibody for insertion into the retargeted HSV platform and found that the recombinant virus entered cells specifically through EREG expressed by the cells. This novel antibody-screening system may contribute to the discovery of unique and unexpected molecules that might be used for the entry of receptor-retargeted oncolytic HSVs.IMPORTANCE The tropism of the cellular entry of HSV is dependent on the binding of the envelope gD to one of its authentic receptors. This can be fully retargeted to other receptors by inserting scFvs into gD with appropriate modifications. In theory, upon binding to the engineered gD, receptors other than authentic receptors should induce a conformational change in the gD, which activates downstream mechanisms required for viral entry. However, prerequisite factors for receptors to be used as targets of a retargeted virus remain poorly understood, and it is difficult to predict which molecules might be suitable for our retargeted HSV construct. Our HSV-based probe will allow unbiased screening of antibody-antigen pairs that mediate virus entry and might be a useful tool to identify suitable pairs for our construct and to enhance our understanding of virus-cell interactions during infection by HSV and possibly other viruses.


Assuntos
Epirregulina/metabolismo , Herpesvirus Humano 1/metabolismo , Vírus Oncolíticos/fisiologia , Anticorpos de Cadeia Única/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Células CHO , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetulus , Humanos , Neoplasias/terapia , Terapia Viral Oncolítica , Células Vero , Tropismo Viral
17.
Cancer Sci ; 112(4): 1633-1643, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33565179

RESUMO

Tumor metastasis is the leading cause of death worldwide and involves an extremely complex process composed of multiple steps. Our previous study demonstrated that apoptosis signal-regulating kinase 1 (ASK1) deficiency in mice attenuates tumor metastasis in an experimental lung metastasis model. However, the steps of tumor metastasis regulated by ASK1 remain unclear. Here, we showed that ASK1 deficiency in mice promotes natural killer (NK) cell-mediated intravascular tumor cell clearance in the initial hours of metastasis. In response to tumor inoculation, ASK1 deficiency upregulated immune response-related genes, including interferon-gamma (IFNγ). We also revealed that NK cells are required for these anti-metastatic phenotypes. ASK1 deficiency augmented cytokine production chemoattractive to NK cells possibly through induction of the ligand for NKG2D, a key activating receptor of NK cells, leading to further recruitment of NK cells into the lung. These results indicate that ASK1 negatively regulates NK cell-dependent anti-tumor immunity and that ASK1-targeted therapy can provide a new tool for cancer immunotherapy to overcome tumor metastasis.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Metástase Neoplásica/patologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imunoterapia/métodos , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/imunologia , Células RAW 264.7
18.
Cancer Immunol Immunother ; 70(9): 2529-2543, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33570675

RESUMO

Intravesical Bovis bacillus Calmette-Guérin (BCG) therapy is the most effective immunotherapy for bladder cancer, but it sometime causes serious side effects because of its inclusion of live bacteria. It is necessary to develop a more active but less toxic immunotherapeutic agent. Trehalose 6,6'-dimycolate (TDM), the most abundant hydrophobic glycolipid of the BCG cell wall, has been reported to show various immunostimulatory activities such as granulomagenesis and adjuvant activity. Here, we developed cationic liposomes incorporating TDM purified from Mycobacterium bovis BCG Connaught, and we investigated the antitumor effect of the cationic liposome TDM (Lip-TDM). Lip-TDM exerted an antitumor effect in bladder cancer, colon cancer, and melanoma-bearing mouse models that was comparable or even superior to that of BCG, with no body weight loss or granuloma formation. The antitumor effect of Lip-TDM disappeared in two types of mice: those with depletion of CD8+ T cells, and those with knockout of macrophage-inducible C-type lectin (Mincle) which recognize TDM. Lip-TDM treatment enhanced the maturation and migration of dendritic cells in the tumor microenvironment in a Mincle-dependent manner. Our results elucidate mechanisms that underlie Lip-TDM treatment and suggest that Lip-TDM has potential as a safe and effective treatment for various cancers.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Fatores Corda/administração & dosagem , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Fatores Imunológicos/administração & dosagem , Mycobacterium bovis , Adjuvantes Imunológicos , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/isolamento & purificação , Linfócitos T CD8-Positivos/metabolismo , Fracionamento Químico , Fatores Corda/química , Fatores Corda/isolamento & purificação , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Imunofenotipagem , Infusões Parenterais , Lipossomos , Ativação Linfocitária , Camundongos , Estrutura Molecular , Mycobacterium bovis/química , Solventes , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Sci ; 111(8): 2770-2778, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32573072

RESUMO

Thalidomide and its analogues are known as immunomodulatory drugs (IMiDs) that possess direct antimyeloma effects, in addition to other secondary effects, including antiangiogenic, antiinflammatory, and immunomodulatory effects. Although the involvement of natural killer (NK) cells in the antitumor effects of IMiDs has been reported, it is unclear whether IMiDs inhibit cancer cell metastasis by regulating the antitumor function of NK cells. In this study, we examined the protective effects of thalidomide against cancer metastasis by focusing on its immunomodulatory effects through NK cells. Using experimental lung metastasis models, we found that pharmacological effects of thalidomide on host cells, but not its direct anticancer tumor effects, are responsible for the inhibition of lung metastases. To exert the antimetastatic effects of thalidomide, both γ-interferon (IFN-γ) production and direct cytotoxicity of NK cells were essential, without notable contribution from T cells. In thalidomide-treated mice, there was a significant increase in the terminally differentiated mature CD27lo NK cells in the peripheral tissues and NK cells in thalidomide-treated mice showed significantly higher cytotoxicity and IFN-γ production. The NK cell expression of T-bet was upregulated by thalidomide treatment and the downregulation of glycogen synthase kinase-3ß expression was observed in thalidomide-treated NK cells. Collectively, our study suggests that thalidomide induces the functional maturation of peripheral NK cells through alteration of T-bet expression to inhibit lung metastasis of cancer cells.


Assuntos
Citotoxicidade Imunológica/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Talidomida/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fatores Imunológicos/uso terapêutico , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Knockout , Proteínas com Domínio T/metabolismo , Talidomida/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
20.
Monoclon Antib Immunodiagn Immunother ; 37(5): 224-228, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30362928

RESUMO

Podoplanin (PDPN) is expressed in type I alveolar cells of lung but not in type II alveolar cells. PDPN is also known as a specific lymphatic endothelial cell marker because PDPN is not expressed in vascular endothelial cells. PDPNs of several animals have been characterized using specific anti-PDPN monoclonal antibodies (mAbs): PMab-1, PMab-2, PMab-32, PMab-38, PMab-44, and PMab-52 for mouse, rat, rabbit, dog, bovine, and cat PDPNs, respectively. In this study, we investigated the possible crossreaction between these anti-PDPN mAbs and tiger PDPN. Flow cytometry and western blot analyses revealed that the anti-cat PDPN mAb PMab-52 (IgM, kappa) reacted with tiger PDPN, which is overexpressed in Chinese hamster ovary-K1 cells. Using immunohistochemical analysis, type I alveolar cells of the tiger lung were strongly detected by PMab-52. These results indicate that PMab-52 may be useful for the detection of tiger PDPN.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Podócitos/imunologia , Tigres/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Especificidade de Anticorpos/imunologia , Células CHO , Gatos , Bovinos , Cricetulus , Mapeamento de Epitopos , Citometria de Fluxo , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Coelhos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA